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1 Analytical theory

1.1 One pulse model

An introgression of intensity f can be modeled as an injection of alleles at frequency f into
a population. Each allele represents an introgressed haplotype, which will then undergo
genetic drift until the present, at which time it is sampled at some (random) frequency.
The Wright-Fisher diffusion model of genetic drift enables us to calculate the probability
of sampling k out of n haplotypes as introgressed after drift by computing

pn,k(t; f) =

∫ 1

0

(
n

k

)
yk(1− y)n−kφ(f, y; t)dy

where φ(f, y; t) is the probability that a haplotype has gone from frequency f to frequency
y in 2Net generations. Using well known results [Ewens, 2012], we obtain a differential
equation for the frequency dependent part, µn,k(t) ≡

∫ 1
0 y

k(1− y)n−kφ(f, y; t)dy,

d

dt
µn,k =

k(k − 1)

2
µn,k−1 − k(n− k)µn,k +

(n− k)(n− k − 1)

2
µn,k+1.

This is a linear system of differential equations and can be solved by matrix exponentiation.
Thus,

pn,k(t; f) =

(
n

k

)
eQtf

where Q is the matrix of coefficients of the system of differential equations and f = ((1−
f)n, f(1− f)n−1, . . . , fn)T . Note that Q is an (n+ 1)× (n+ 1) matrix, because it includes
all haplotype frequencies from k = 0 to k = n; however, it is only of rank n because∑n

k=0 pn,k(t; f) = 1. This approach is similar to that used in Kamm et al. [2018] and
Jouganous et al. [2017].
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1.2 Two pulse model

We can apply a similar logic to the one pulse model, and this time obtain an approximate
formula. Working in a similar setting to before, we suppose that an admixture of intensity
f1 occurred, then t1 generations more recently was followed by a second admixture of
intensity f2, which was t2 generations more ancient than the present. Then, we want to
evaluate the integral

pn,k(t1, t2; f1, f2) =

∫ 1

0

∫ 1

0

(
n

k

)
yk(1− y)n−kφ(f1, z; t1)φ(f2 + (1− f2)z, y; t2)dzdy

=

∫ 1

0

(∫ 1

0

(
n

k

)
yk(1− y)n−kφ(f2 + (1− f2)z, y; t2)dy

)
φ(f1, z; t1)dz

because we need to integrate over all possible allele frequencies at the time of the second
pulse of admixture.

The internal integral is identical to the one pulse model, however, the initial allele
frequency needs to be adjusted to f2+(1−f2)z. Thus, the result will be a linear combination
of terms that look like dn,k = (f2 + (1 − f2)z)k(1 − f2 − (1 − f2)z)n−k Thus, we need to
derive a differential equation for

ηn,k(t) ≡
∫ 1

0
(f2 + (1− f2)z)k(1− f2 − (1− f2)z)n−kφ(f, z; t)dz.

Applying the Wright-Fisher generator to dn,k, we get

Ldn,k =
1

2
x(1− x)

d2

dx2
dn,k

=
1

2
(1− f2)2x(1− x) (k(k − 1)dn−2,k−2 − 2k(n− k)dn−2,k−1

+(n− k)(n− k − 1)dn−2,k) .

Now, put D = k(k − 1)dn−2,k−2 − 2k(n − k)dn−2,k−1 + (n − k)(n − k − 1)dn−2,k, and
write

(1− f2)2x(1− x)D = (f2 + (1− f2)x− f)(1− f2 − (1− f2)x)D

= (f2 + (1− f2)x)(1− f2 − (1− f2)x)D − f2(1− f2 − (1− f2)x)D.

Now, the first term looks like

k(k − 1)dn,k−1 − 2k(n− k)dn,k + (n− k)(n− k − 1)dn,k+1,

which is the same as the one pulse model. However, the second term will be

k(k − 1)dn−1,k−2 − 2k(n− k)dn−1,k−1 + (n− k)(n− k − 1)dn−1,k.
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Note that the second term is not the same as the first term with n 7→ n− 1. However, we
will apply the approximation, that dn,k ≈ dn−1,k for large n, Thus, we have

d

dt
ηn,k =

k(k − 1)

2
ηn,k−1 − k(n− k)ηn,k +

(n− k)(n− k − 1)

2
ηn,k+1

− f2
(
k(k − 1)

2
ηn,k−2 − k(n− k)ηn,k−1 +

(n− k)(n− k − 1)

2
ηn,k

)
.

The first line is simply the same differential equation as the one pulse case, while the
second line is shifted down one term. Defining the matrix corresponding to that differential
equation as Qm, we see that

pn,k(t1, t2; f1, f2) ≈
(
n

k

)
eQt2e(Q−f2Qm)t1ft

where ft = ((1− f2 − (1− f2)f1)n, (f2 + (1− f2)f1)(1− f2 − (1− f2)f1)n−1, . . . , (f2 + (1−
f2)f1)

n)T .

1.3 Dilution model

Under this model, an admixture of intensity f1 occurs, then t1 generations more recently,
an unadmixed group contributes to the population at hand with intensity f2 t2 generations
in the past. Again, we can write down an integral to solve,

pn,k(t1, t2; f1, f2) =

∫ 1

0

∫ 1

0

(
n

k

)
yk(1− y)n−kφ(f1, z; t1)φ((1− f2)z, y; t2)dzdy

=

∫ 1

0

(∫ 1

0

(
n

k

)
yk(1− y)n−kφ((1− f2)z, y; t2)dy

)
φ(f1, z; t1)dz.

Again, the internal integral is the same as the one pulse model, except that the initial
allele frequency is (1− f2)z. Evidently, the result that integral will be a function of terms
cn,k = ((1− f2)z)k(1− (1− f2)z)n−k, so we need to solve integrals of the form

νn,k ≡
∫ 1

0
((1− f2)z)k(1− (1− f2)z)n−kφ(f1, z; t1)dz.

Applying the generator of the Wright-Fisher diffusion to the function cn,k we see that

Lcn,k =
1

2
x(1− x)

d2

dx2
cn,k

=
1

2
(1− f)2x(1− x) ((k(k − 1)cn−2,k−2 − 2k(n− k)cn−2,k−1

+(n− k)(n− k − 1)cn−2,k) .
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Let C = k(k− 1)cn−2,k−2− 2k(n−k)cn−2,k−1 + (n−k)(n−k− 1)cn−2,k, then note that

(1− f)2x(1− x)C = ((1− f)x)(1− (1− f)x− f)C

= ((1− f)x)(1− (1− f)x)C − f((1− f)x)C.

Multiplying through, we see that the first term looks like

k(k − 1)cn,k−1 − 2k(n− k)cn,k + (n− k)(n− k − 1)cn,k+1,

while the second term will be

k(k − 1)cn−1,k−1 − 2k(n− k)cn−1,k + (n− k)(n− k − 1)cn−1,k+1,

i.e. it is the same except with n 7→ n− 1. Making an approximation that cn,k ≈ cn−1,k for
large n, we can pull out a factor of (1− f2) and obtain a system of differential equations,

d

dt
νn,k ≈ (1− f2)

(
k(k − 1)

2
νn,k−1 − k(n− k)νn,k +

(n− k)(n− k − 1)

2
νn,k+1

)
.

Noting that this is essentially the same differential equation as the one pulse model, we
have that

pn,k(t1, t2; f1, f2) ≈
(
n

k

)
eQt2e(1−f2)Qt1fd

=

(
n

k

)
eQ((1−f2)t1+t2)fd

where now fd = ((1− (1− f2)f1)n, ((1− f2)f1)(1− (1− f2)f1)n−1, . . . , ((1− f2)f1)n)T .
Note that this surprisingly simple form suggests that a dilution can be understood as

an admixture of intensity (1− f2)f1 occurring (1− f2)t1 + t2 generations ago.

2 Error model

2.1 Single population

To incorporate false negative and false positive calls into our model, assume that there
are independent false negative and false positive calls with rates ε+ and ε−, respectively.
Specifically, every individual that has a fragment is called negative independently with
probability ε− and every individual that doesn’t is called positive with probability ε+.
Define b(k;N, p) to the probability mass function of a binomial random variable with size
N and probability p. Also define f(k;N1, N2, p1, p2) to be the distribution of the difference
of two binomial random variables. Then we have that

f(k;N1, N2, p1, p2) =

N2∑
i=0

b(k + i;N1, p1)b(i;N2, p2)
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by a simple argument. Thus, we have that the probability of observing a fragment at
frequency k with error is

p̃n,k =
n∑

i=0

f(k − i;n− i, i, ε+, ε−)pn,i

because if we have i introgressed fragments, we independently take false positives out of the
n− i non-introgressed fragments and false negatives out of the i introgressed fragments. If
the number of false positives minus false negatives is d, then we have i+ d total fragments
after errors, and thus need d = k − i to end up with exactly k fragments. We then sum
over all i.

To quantify the impact of errors in calling fragments, we generated an expected FFS
under a 1 pulse model with f = 0.02 and t = 0.1 diffusion time units. We then computed
the Kullback-Leibler divergence between the true FFS and the an FFS with a given false
positive and false negative rate. Supplementary Figure 6 shows that, for low amounts of
admixture as we simulated here, the impact of false positives is much larger than that
of false negatives, due largely to the fact that most of the genome is a true negative.
Nonetheless, even with relatively high false negative and false positive rates, such as ε− =
0.1 and ε+ = 0.01 (far higher than the rates seen in simulations from Steinrücken et al.
[2018]), the Kullback-Leibler divergence is only ∼ 0.005, indicating that false positives and
false negatives do not have a substantial effect on the FFS.

2.2 Two populations

We extended the error model to joint fragment frequency spectra by applying it to each
row and column of the JFFS. Specifically, letting pn1,n2,k1,k2 represent the entry of the
JFFS corresponding to frequency k1 out of n1 in population 1 and k2 out of n2 frequency
in population 2, we first compute

p̂n1,n2,k1,k2 =

n1∑
i=0

f(k1 − i;n1 − i, i, ε+, ε−)pn1,n2,i,k2

by modeling error along one axis, and then compute the probability of observing a fragment
with error

p̃n1,n2,k1,k2 =

n2∑
j=0

f(k2 − j;n2 − j, j, ε+, ε−)p̂n1,n2,k1,j .

This formula can easily be adjusted to have population specific error rates.
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3 Implementation of maximum likelihood method

3.1 Numerical aspects

We implemented Python software to calculate and optimize the likelihoods. Specifically, we
have functions to compute the likelihood under the one and two pulse models and include
the error model. We used scipy.sparse.linalg.expm multiply to compute the sparse
matrix exponentials, and optimized the likelihood using scipy.optimize.fmin l bfgs b.
Code for implementing the model is available at https://github.com/Villanea/Neanderthal_
admix/blob/master/sym_stat_theory.py

3.2 Validation of maximum likelihood method

We evaluated the performance of the maximum likelihood method by subsampling 200
simulations per model from the simulations done to train the fully connected neural net-
work. We then computed the maximum likelihood parameter estimates under both the one
pulse and the two pulse model. We then performed a likelihood ratio test with 2 degrees
of freedom to see if we could reject the one pulse model at the 5% level. The results are
summarized in Supplementary Table 1.

Model Pop Fraction rejecting one pulse

One pulse ASN 0.027

One pulse EUR 0.071

Two pulse ASN 0.17

Two pulse EUR 0.071

Three pulse ASN 0.29

Three pulse EUR 0.23

Dilution ASN 0.031

Dilution EUR 0.031

All pulse ASN 0.21

All pulse EUR 0.19

Supplementary Table 1: False positive rates and power of the maximum likelihood method.
The first column indicates the model used for simulation, the second column the population
analyzed, and the third column shows the fraction of simulations that rejected the one pulse
model at the 5% level. Bolded numbers indicate situations where we expect the one pulse
model to be rejected in favor of the two pulse model.

From these results, we conclude that we achieve roughly the expected 5% false positive
rate at the 5% level and find that we have ∼20% power. However, we note that the
simulations cover an extremely wide range of parameters, including many cases where
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Supplementary Table 2: Parameter estimates from the Asian data. Each row corresponds
to a different probability cutoff for calling fragments from the Steinrücken dataset. The
columns are as follows: f ij indicates the intensity of admixture pulse i under a model with
j pulses, t ij indicates the time (in diffusion units) after pulse i before the next event in a
model with j pulses, FPR i indicates the inferred false positive rate under a model with i
pulses, FNR i indicates the inferred false negative rate under a model with i pulses, lnL i
indicates the negative log likelihood under a model with i pulses, and lambda indicates the
likelihood ratio statistic.

Supplementary Table 3: Parameter estimates from the Europe data. Columns and rows
are the same as in Table 2

the second pulse is very small. Thus, we believe that power is much higher for realistic
parameter values.

4 Results from maximum likelihood fitting

Supplementary Table 2 and 3 shows the parameter estimates from maximum likelihood
fitting of the Asian and European data, respectively, across a variety of cutoffs from the
Steinrücken data.

5 Admixture constraints

Given European and East Asian mixture proportions, fEUR and fASN, respectively, we
constrain mixture proportions by constraining

a =
fASN + fEUR

2

and
d = fASN − fEUR

we then express fASN and fEUR in terms of the model parameters, and solve for model
parameters that will adhere to the constraints.

In the one pulse model, f1 is a single pulse of Neandertal introgression into the ancestral
Eurasian population. So,

fASN = f1

and
fEUR = f1.
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Thus, we see that
f1 = a

In the two pulse model, f1 is a first pulse of Neandertal introgression into the ances-
tral Eurasian population, and f2 is a second pulse of introgression into the East Asian
population. This results in

fASN = f2 + (1− f2)f1
and

fEUR = f1,

which yields
f1 = a− d/2

and

f2 =
d

1 + d/2− a
.

For the three pulse model, f1 is a first pulse of Neandertal introgression into the an-
cestral Eurasian population, f2 is a second pulse of introgression into the East Asian
population, and f3 is a second pulse of introgression into the European population. Thus,

fASN = f2 + (1− f2)f1

and
fEUR = f3 + (1− f3)f1,

Note that in this model, we have more free parameters than constraints, so we sample f1
from a uniform distribution between 0 and a− d/2, and then solve to obtain

f2 =
a+ d/2− f1

1− f1

and

f3 =
a− d/2− f1

1− f1
.

For the dilution model, f1 is a single pulse of Neandertal introgression into the ancestral
Eurasian population, and f4 represents the dilution from the Basal Eurasian population
into the European population. This yields admixture proportions

fASN = f1

and
fEUR = (1− f4)f1,

resulting in
f1 = a+ d/2

8



and

f4 =
d

a+ d/2

In the model with 3 pulses of Neandertal admixture and dilution, f1 is a first pulse
of Neandertal introgression into the ancestral Eurasian population, f2 is a second pulse
of introgression into the East Asian population, and f3 is a second pulse of introgression
into the European population, while f4 represents the dilution from the Basal Eurasian
population into the European population. Further, we always assume that dilution is more
recent than the second pulse in Europe. In this case, admixture proportions are

fASN = f2 + (1− f2)f1

and
fEUR = (f3 + (1− f3)f1)(1− f4)

Again, we have more free parameters than constraints so we first draw f1 from a uniform
distribution between 0 and a− d/2 and f4 from a uniform distribution between 0 and 0.5.
Then, we set

f2 =
a+ d/2− f1

1− f1
and

f3 =
a− d/2 + f1(1− f4)

(1− f1)(1− f4)

6 Neural Network Weights

In order to quantify the impact of different frequency spectrum categories to the inferences
of the FCNN, we computed the matrix product of the weights across the fully connected
layers. Note that we flatten our input FFS matrix to a single vector of length m1 =
64× 64 = 4096 initially. Then, we compute the weighted sum of the weights leading to the
nodes in the subsequent layers of the FCNN. Specifically, if layer i has mi nodes, and wi

is the mi ×mi+1 matrix where wi,j,k provides the weights from node j in layer i to node k
in layer i+ 1, then we compute the matrix product

M = wiwi+1 · · ·wn

when we have n layers. The resulting matrix M will be 4096×5, with each of the 5 columns
corresponding to one of the different models. Thus, we map each of the columns back into
the original 64× 64 matrix, resulting in the panels shown in Supplementary Figure 7.

This figure shows the signals that the FCNN extracts from the data to distinguish the
models from the “average” simulated dataset. For instance, compared to all the other
models which have an excess of Neandertal ancestry in East Asia, the FCNN identifies
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the 1 pulse model by those that have relatively less Neandertal ancestry in East Asia (as
can be seen by the red blob along the y axis) and relatively more Neandertal ancestry in
Europe (as can be seen by the yellow blob on the x axis). Similarly, models with additional
pulses can be identified by relatively less shared low frequency fragments and relatively
more private moderate frequency fragments.

7 Robustness of FCNN results

The Neandertal fragment calls from Steinrücken et al. [2018] are based on the posterior
probability of introgression at each position estimated using diCal-admix. Because each
position has a different probability of introgression, defining a global cut-off is necessary
to obtain a consensus across the genome, such that a higher cut-off results in a higher
certainty of the calls (i.e. higher precision), but more false negatives (i.e. lower recall).
For the analysis presented in the main text, we used a cut-off of 0.45, recommended in
Steinrücken et al. [2018] as it provides the best balance across performance metrics based
on their precision-recall curves. However, to test the robustness of the selected cut-off, we
generated FFS based on a range of cut-offs and analyzed them using the fully-connected
neural network. Supplementary Figure 4 shows that our results are consistent across the
entire range of cutoffs. Likewise, we explored the relation between higher false positive rate
(i.e. lower posterior probability cutoffs in the Steinrucken data) and the reported fraction
of introgression for each population. We find that the relative enrichment in East Asia is
constant across a wide range of false positive rates (Supplementary Figure 5).

In addition, we had access to the introgressed fragments calls from Sankararaman et al.
[2014], which were ascertained independently using a conditional random field method. We
converted these fragment calls into introgressed site calls by looking at the same positions
every 100kb used for the Steinrucken data, and counting how many individuals presented
an introgressed fragment which overlapped with that site. We used these fragment calls as
independent confirmation of all results (Supplementary Figure 8).

8 Error model implemented on FCNN

False positive error on the introgressed Neandertal fragment calls could mimic the signal for
secondary pulses of admixture, in particular because most of the genome is a true negative,
false positives are likely to be low frequency, mimicking more recent introgression. In order
to test if false positive errors resulted in the signal of secondary gene flow we observe, we
extended the error model into FFS 2D matrix. We then trained the FCNN classifier using
data with errors. Specifically, we trained two different situations: one in which there are
symmetric errors with a false positive rate of 0.14% and a false negative rate of 1% in both
Europe and Asia, as well as an asymmetrical model in which false positives only occur in
East Asia. For each model, we provided it with training data consisting of half data with
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no errors and half data with errors.
We found that our symmetric error classifier performed well on both data with errors

and data without errors (Supplementary Figure 9a). To test the robustness of our symmet-
ric error classifier to false positive error that it wasn’t trained with, we provided it with test
data including 0%, 0.1%, 0.2%, and 1% false positive error rates into both Europe and East
Asia populations based on FFS created under model 1 (equal true Neandertal ancestry).
Figure 9b shows that while adding false positive errors to FFS simulated under the 1 pulse
model had the predicted effect of mimicking the signal of the 3 pulse and all pulse models,
the effect is not noticeable at 0.1% or 0.2% error rates, and only becomes problematic at
1%. Note that 1% false positive errors represents an extreme case, considering the aver-
age Neandertal introgression fraction in our data is around ∼1.5% (Supplementary Figure
9c). A 1% false positive rate would indicate that the vast majority of the calls are false
positives, which we believe is unlikely given the concordance between the Steinrucken and
Sankaraman datasets. We then used the FCNN classifier trained with false positive error
to classify the Steinrucken empirical data, finding similar results to those when we used
the FCNN trained without error (Supplementary Figure 9d).

An unlikely, but possible scenario is that the enrichment of Neandertal ancestry ob-
served in East Asian individuals is entirely the result of false positive errors found only
on this population. We tested this using our FCNN trained with only false positive er-
rors in East Asia. The newly trained FCNN performs comparably to the previous error
model (Supplementary Figure 10a). We then again explored robustness to error rates that
weren’t used to train the classifier by incorporating 0%, 0.1%, 0.2%, and 1% false positive
error rates into the East Asia population only, in FFS created under model 1 (equal true
Neandertal ancestry). Adding false positive error to the East Asia population had the
predicted effect of mimicking the signal of the 2 pulse model (Supplementary Figure 10b).
However, similar to the previous symmetric error classifier, the effect is not noticeable at
0.1% or 0.2% error rates (corresponding approximately to the elevation in Neandertal an-
cestry in East Asia), and only becomes problematic at 1%, which represents the extreme
case (Supplementary Figure 10c). Once more, we used the FCNN classifier trained with
false positive error to classify the Steinrucken empirical data, finding similar results as in
the error-free and the symmetric error models (Supplementary Figure 10d).
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Supplementary Figure 1: Residuals from fitting the maximum likelihood model. Each panel
corresponds to the indicated model, while the histogram shows the empirical residuals. The
line shows a Normal(0,1) distribution.
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Supplementary Figure 4: Posterior probability of the empirical introgression data from the
FCNN classifier under different cut-offs of the posterior probability of introgression in the
Steinrücken et al. [2018] data. The x axis indicates the posterior probability cutoff, and the
y axis the model probability according to the FCNN. Each line corresponds to a different
model.
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Supplementary Figure 5: Neandertal admixture proportion in East Asia and Europe rela-
tive to the false positive rate for the Steinrucken data, obtained from the precision-recall
curves provided in Steinrücken et al. [2018]. The dotted line marks the expected false
positive rate at the cut-off used in this study (Posterior probability >0.45, corresponding
to FPR = 0.0014).
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Supplementary Figure 6: The impact of false positive and false negative fragment calls
on the FFS. The x axis shows the false positive rate, and the y axis the Kullback-Liebler
divergence of the observed FFS to the true FFS (larger values indicate more difference).
Each line corresponds to a different false negative rate.
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Supplementary Figure 7: Weights projected across layers into the final dense layer, repre-
senting the relative importance of each position along the FFS matrix when classifying a
FFS into one of the five final categories.

18



1 Pulse 2 Pulse 3 Pulse Dilution All Pulses

P
ro

ba
bi

lit
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Supplementary Figure 8: Posterior probability of the empirical introgression data from
Sankararaman et al., 2014 matching each of the five demographic models, determined by
the FCNN classifier.
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Supplementary Figure 9: a-d) Results of training the FCNN classifier using FFS including
false positive error into both the East Asia and European populations. a) Posterior prob-
ability that the chosen model is correct (precision), for all models under different levels
of support for the chosen model. The x axis shows the probability cutoff that we used to
classify models, and the y axis shows the precision. Each line corresponds to a different
model. Solid lines correspond to FSS simulated with no error, and dashed lines correspond
to FFS simulated with false positive error. b) Results of the test to determine the false
positive error would be confused with a signal of secondary admixture. c) Sensitivity of
the FCNN classifier when incorporating various rates of false positive error into both pop-
ulations. This shows the probability that the one pulse model is chosen given that the
data was simulated under the one pulse model. d) Posterior probability of the Steinrucken
et al. 2018 empirical introgression data matching each of the five demographic models,
determined by the FCNN classifier.

20



a) b)

c) d)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability cut−off

Pr
ec

is
io

n

Models
1 Pulse
2 Pulse
3 Pulse
Dilution
All Pulses

0.20 0.50 0.80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability cut−off

Se
ns

iti
vi

ty
 (R

ec
al

l)

False Positive Rate

0% FPR
0.01% FPR
0.02% FPR
1% FPR

Lorem ipsum

Lorem ipsumLorem ipsum

Lorem ipsum

0.20 0.50 0.80 1 Pulse 2 Pulse 3 Pulse Dilution All Pulses

Pr
ob

ab
ilit

y
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Supplementary Figure 10: a-d) Results of training the FCNN classifier using FFS including
false positive error into only the East Asia population. a) Posterior probability that the
chosen model is correct (precision), for all models under different levels of support for the
chosen model. The x axis shows the probability cutoff that we used to classify models,
and the y axis shows the precision. Each line corresponds to a different model. Solid lines
correspond to FSS simulated with no error, and dashed lines correspond to FFS simulated
with false positive error. b) Results of the test to determine the false positive error would
be confused with a signal of secondary admixture. c) Sensitivity of the FCNN classifier
when incorporating various rates of false positive error into the East Asia population. This
shows the probability that the one pulse model is chosen given that the data was simulated
under the one pulse model. d) Posterior probability of the Steinrucken et al. 2018 empirical
introgression data matching each of the five demographic models, determined by the FCNN
classifier.
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